Eutrophication is the enrichment of nutrients such as phosphate (PO_4^{3-}) or nitrate (NO_3^-) in a water body. This stimulates algal growth and can result in a serious decline in water quality. For decades, eutrophication and associated risks such as oxygen and biodiversity decline have been recognized as a serious issue globally. But there is still no uniform method for quantification of the trophic state.

Facts

What causes eutrophication?

Excess nutrients being released into coastal or estuarine systems originate from fertilizers and/or excess feedings used in agri- and aquaculture. Pollution and eutrophication have been increasing with the intensive growth of this sector. Thus, eutrophication of natural water bodies caused by insufficiently treated effluents can result in pollution of water resources used in the aquaculture industry.
Consequences for organisms

As algal growth increases, less sunlight reaches the bottom layer causing aquatic plants to die. Both, the dead plants and dying phytoplankton from upper water layers are consumed by microbes alongside with dissolved oxygen (O$_2$). O$_2$ is essential for the well-being of higher organisms such as fish. But, if O$_2$ declines seriously, a sufficient supply is not granted anymore. Mobile species migrate away from regimes of low O$_2$ concentration (hypoxia) or are threatened to suffocate if they cannot. Anoxic (without O$_2$) conditions will cause all higher organisms to die. These regimes are therefore called dead zones.

The largest dead zone in the Gulf of Mexico spanned over approx. 22,700 km2 (2017).

Interesting links
https://www.youtube.com/watch?v=6LAT1gLMPu4
https://oceanservice.noaa.gov/facts/eutrophication.html
http://www.fao.org/3/a-i7558e.pdf

N$_2$O, CO$_2$, CH$_4$

GHGs

Under low oxygen conditions, microbes produce greenhouse gases (GHG), such as nitrous oxide (N$_2$O) and methane (CH$_4$) through biochemical processes that keep them alive. These gases are partially released to the atmosphere as their solubility in water is low. There they can contribute to global warming.

Eutrophication

Hypoxia and dead zones are increasing globally. Global warming supports this process as temperature increase stimulates microbial activity in favor of algae growth and decreases oxygen and GHG solubility.
Aquaculture facilities lined with plastic (a), with concrete (b) and without cover (c). (right). © M. Drews

Does aquaculture mitigate CO₂ emissions?

We found that, unsealed ponds acted as CO₂ source to the atmosphere due to decomposition of soil organic matter, accumulating surplus feedings and possibly intrusion of CO₂-rich groundwater. In contrast, a sealed and well-managed pond could absorb atmospheric CO₂ through conversion into phytoplankton and finally shrimp biomass.

Use of sealed aquaculture ponds with improved operational and management strategies will reduce CO₂ emissions.

Take home messages

→ Results of Eutrophication can be a serious decline in water quality and production of GHGs, posing risks such as a decline in oxygen and biodiversity

→ Uniform methods for quantification of the trophic state are still lacking

→ Improved pond operational strategies could help to minimize GHG emissions associated with aquaculture