Tropical coastal zones receive major part of the annual riverine inputs of freshwater and dissolved and particulate substances. They harbour some of the most productive and diverse ecosystems on earth like coral reefs, seagrasses and mangroves.

Besides that they are also among the regions with the strongest human modifications. We investigate the biogeochemical and ecological response of tropical coastal systems to present and past environmental change along three major lines of research.
 

Terrestrial influences on coastal systems of the tropics – natural vs. anthropogenic factors

The delicate ecological balance of either single tropical coastal ecosystems or associations of several of them can be disturbed by a number of indirect and direct effects of human activities. River inputs of land-derived substances can on the one hand nourish, but on the other hand also threaten coastal ecosystems. The most significant processes with respect to human activities are deforestation, agri- and aquaculture, fertilizer and pesticide use, urban and industrial waste discharge, canalization and damming.

Direct effects of human-induced threats to tropical coastal ecosystems are eutrophication, pollution, habitat modification/ destruction and overexploitation and/or selective exploitation of resources. We investigate how direct and indirect effects of land-based human activities alter the water quality and biogeochemistry of tropical coastal systems and hence the living conditions for their flora and fauna.

Interaction of biota with the abiotic environment in tropical coastal ecosystems

A major impact of natural processes and human activities is to alter the internal dynamics of coastal ecosystems affecting the cycling of elements. Changes in the physical environment may affect biogeochemical fluxes and their composition in estuaries, mangroves, seagrasses, coral reefs and coastal seas. This may lead to changes in the distribution, abundance and wellbeing of flora and fauna which, in turn, affects the biogeochemical cycling of elements.

The interaction of biota with their abiotic environment is an important control for the internal cycling of elements in coastal ecosystems. We investigate how flora and fauna modify element cycles through feeding and construction activities on the one hand and how changes in the amount and composition of elements beneficial or harmful to life affect the flora and fauna on the other hand.

Reconstruction of past ecosystem response to environmental change

Predicting future climate and the response of organisms/populations/ecosystems to environmental change requires understanding of the underlying processes. Reconstruction of the palaeoenvironment is a suitable tool in this respect. Using proxies from archives which have collected information on the variation of, for example, climate, oceanic circulation or vegetation on land allows to understand the processes responsible for changes in the past.

The knowledge on past variations can then be used in combination with instrumental records which often date back only a couple of decades to model or predict future changes of, for example, climate and ecosystems. We investigate the history of environmental conditions and ecosystem response during times with and without human influence by the use of high-resolution archives in order to distinguish between natural and anthropogenic causes of change.