Tropical coastal zones receive major part of the annual riverine inputs of freshwater and dissolved and particulate substances. They harbour some of the most productive and diverse ecosystems on earth like coral reefs, seagrass meadows and mangrove forests. Besides that they are also among the regions with the strongest human modifications. We investigate the biogeochemical and ecological response of tropical coastal systems to present and past environmental change along four major lines of research.

'Catchment to Coast': terrestrial influences on coastal systems – natural vs. anthropogenic factors

The delicate ecological balance of either single tropical coastal ecosystems or associations of several of them can be disturbed by a number of indirect and direct effects of human interventions. River inputs of land-derived substances can on the one hand nourish, but on the other hand also threaten coastal ecosystems. The most significant processes with respect to human activities are deforestation, agri- and aquaculture, fertilizer and pesticide use, urban and industrial waste discharge, canalization and damming. Direct effects of human-induced threats to tropical coastal ecosystems are eutrophication, pollution, habitat modification/destruction and overexploitation and/or selective exploitation of resources. We investigate how direct and indirect effects of land-based human activities alter the water quality and biogeochemistry of tropical coastal systems and hence the living conditions for their flora and fauna.

Interaction of biota with the abiotic environment in tropical coastal ecosystems

A major impact of natural processes and human activities is to alter the internal dynamics of coastal ecosystems affecting the cycling of elements. Changes in the physical environment may affect biogeochemical fluxes and their composition in estuaries, mangrove forests, seagrass meadows, coral reefs and coastal seas. This entails changes in the distribution, abundance and wellbeing of flora and fauna which, in turn, affect the biogeochemical cycling of elements. The interaction of biota with their abiotic environment is an important control for the internal cycling of elements in coastal ecosystems. We investigate how flora and fauna modify element cycles through feeding and construction activities on the one hand and how changes in the amount and composition of elements beneficial or harmful to life affect the flora and fauna on the other hand.

'Blue Carbon' storage

In times of everincreasing atmospheric CO2 concentrations and global warming it is of utmost importance to identify and quantify natural carbon sinks and to understand the underlying production, transport and transformation processes. Studies in recent years have highlighted the important role of vegetated coastal habitats in the intertidal zone as highly efficient natural carbon sinks. Mostly found along tropical coasts mangrove forests, seagrass meadows and saltmarshes store more carbon per unit area and time than most other ecosystems on earth, in particular in their sediments. We investigate the sources, amount and composition of organic matter and quantify carbon sequestration in these ecosystems.

Reconstruction of past ecosystem response to environmental change

Predicting future climate and the response of organisms/populations/ecosystems to environmental change requires a proper understanding of the underlying processes. Reconstruction of the paleoenvironment is a suitable tool in this respect. Using proxies from archives which have collected information on the variation of, for example, climate, oceanic circulation, vegetation and land use allows to understand the processes responsible for changes in the past. The knowledge on past variations can then be used in combination with instrumental records which oftenly date back only a couple of decades to model or predict future changes of, for example, climate and ecosystems. We investigate the history of environmental conditions and ecosystem response during times with and without human influence by the use of high-resolution archives in order to distinguish between natural and anthropogenic causes of change.

Research Projects

WG-Projects

ECOLOC - "Environmental change affecting COastal ecosystems of tropical China during the Anthropocene: Landward vs. OCeanic influence".

NITRACE -" Nitrogen isotopes across the tropics – tracing anthropogenic nitrogen inputs to coastal ecosystems"

SPICE III "TIMES - Terrestrial Influences on Mangrove Ecology and Sustainability of Their Resources", coordination and subproject 10 "Reconstruction of lagoon dynamic stages and mangrove extension in the Segara Anakan Lagoon during the Anthropocene".

SPICE III "CAFINDO - Climate versus anthropogenic forcing of Late Holocene environmental change affecting Indonesian marine, coastal, and terrestrial ecosystems", subproject 2 "Gradients in carbon and nutrient input into the Java Sea related to human activities in river catchments along the transect Java – Kalimantan during the Late Holocene".